A Vectorization Scheme for Nonconvex Set Optimization Problems
نویسندگان
چکیده
In this paper, we study a solution approach for set optimization problems with respect to the lower less relation. This can serve as base numerically solving by using established solvers from multiobjective optimization. Our strategy consists of deriving parametric family whose optimal sets approximate, in specific sense, that set-valued problem arbitrary accuracy. We also examine particular classes mappings which corresponding is equivalent generated family. Surprisingly, includes convex graph.
منابع مشابه
An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems
By p-power (or partial p-power) transformation, the Lagrangian function in nonconvex optimization problem becomes locally convex. In this paper, we present a neural network based on an NCP function for solving the nonconvex optimization problem. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...
متن کاملRobust Nonconvex Optimization for Simulation-based Problems
In engineering design, an optimized solution often turns out to be suboptimal, when implementation errors are encountered. While the theory of robust convex optimization has taken significant strides over the past decade, all approaches fail if the underlying cost function is not explicitly given; it is even worse if the cost function is nonconvex. In this work, we present a robust optimization...
متن کاملNonconvex Robust Optimization for Problems with Constraints
W propose a new robust optimization method for problems with objective functions that may be computed via numerical simulations and incorporate constraints that need to be feasible under perturbations. The proposed method iteratively moves along descent directions for the robust problem with nonconvex constraints and terminates at a robust local minimum. We generalize the algorithm further to m...
متن کاملAn efficient improvement of the Newton method for solving nonconvex optimization problems
Newton method is one of the most famous numerical methods among the line search methods to minimize functions. It is well known that the search direction and step length play important roles in this class of methods to solve optimization problems. In this investigation, a new modification of the Newton method to solve unconstrained optimization problems is presented. The significant ...
متن کاملPeaceman-Rachford splitting for a class of nonconvex optimization problems
We study the applicability of the Peaceman-Rachford (PR) splitting method for solving nonconvex optimization problems. When applied to minimizing the sum of a strongly convex Lipschitz differentiable function and a proper closed function, we show that if the strongly convex function has a large enough strong convexity modulus and the step-size parameter is chosen below a threshold that is compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Optimization
سال: 2022
ISSN: ['1095-7189', '1052-6234']
DOI: https://doi.org/10.1137/21m143683x